skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Leilani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Microinjection is an essential process in genetic engineering that is used to deliver genetic materials into various biological specimens. Considering the high-throughput requirement for microinjection applications ranging from gene editing to cell therapies, there is a need for an automated, highly parallelized, reproducible, and easy-to-use microinjection strategy. Here we report an on-chip, microfluidic microinjection module designed for compatibility with microfluidic large-scale integration technology that can be fabricated via standard, multilayer soft lithography techniques. The needle-on-chip (NOC) module consists of a two-layer polydimethylsiloxane-based microfluidic module whose puncture and injection operations are reliant solely on Quake valve actuation. As a proof-of-concept, we designed a NOC module to conduct the microinjection of a common genetics model organism, Caenorhabditis elegans ( C. elegans ). The NOC design was analyzed using finite element method simulations for a large range of practically viable geometrical parameters. The computational results suggested that a slight lateral offset (>10 μ m) of the control channel is sufficient for a successful NOC operation with a large fabrication tolerance (50 μ m, 50% channel width). To demonstrate proof-of-concept, the microinjection platform was fabricated and utilized to perform a successful injection of a tracer dye into C. elegans . 
    more » « less